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ABSTRACT 

We consider the class of finite two-person games with perfect information in 
which the last player who can make a legal move either wins or ends the game 
in a tie. We define an equivalence relation over this class and exhibit a 
complete set of representatives for the equivalence classes defined in terms 
of one-pile Nim games. 

We shall consider in this paper  a class of  two-person games with perfect in- 

formation in which the players play alternately, at each turn select a move from a 

finite set of  alternatives, and complete a play of  the game after finitely many 

moves. I f  we add the condition that the first player who cannot make a legal move 

loses, then every such game may be represented as follows. 

DEFINITION 1. Go ---- ~ ,  Gk+l ---- ( a ;  a ~ Gk} , and G - -  Uke~Gk. 

To each a ~ G corresponds the game f~a in which player I must choose some 

al  c a ,  player I I  some a 2 Ea l ,  and so on until some player chooses ~ and thus 

wins the game. I f  we think of a position in a game as being the set of  all permissible 

succeeding positions, it is clear that any game of  the type described is equivalent 

to some ~a" The theory of  such games is well-developed (cf. I-1])*. 

We shall enlarge the class of  games considered to allow for the possibility of  a 

tie. Now a player may be faced with a position from which he can make no legal 

move either because he has lost or because the game has ended in a tie. Such 

games can all be represented in the form ~a for a ~ H defined as follows. 

DEFINITION 2. Ho = {*}, Hk+I = (a:  a _c Hk}, and H = UketaHk. 

In this paper we provide an analysis of  such games. As motivation for interest 

* We are grateful to Dana Scott for suggesting this problem and this formulation of it. 
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in these games, we note that chess is a finite termination game with tie. 

We first define recursively the value In[ of any a ~H. 

DEFINITION 3. I * I = 0, l ~ [  = -- 1, and otherwise 

l al  = - min(Ixl:x a . 

Just as in the case of win-lose games, lal = + 1 iff player I has a winning 

strategy in ~a and [al = - 1  iff player II has a winning strategy. If  In I-- 0, 

either player can force the game to end in a tie. We call attention to the following 

obvious facts which will be used repeatedly without reference. 

LEMMA 4. For any a ~H, a v~ *: 

(i) l a l - - -  + l ~ x ( x e a ,  lx I = - 1 ) ;  

(ii) lal =O~-~Vx(x~a~lx t >O). 3x(xea. lxj = 0 ) ;  

(iii) la l  = -  l~Vx(xea-~lx I = + 1). 

DEFINITION 5. For any a, b e H:  

(i) a @ *  = * @ b = * ; i f a r  

a@b = (x~)b:xEa} U{a~) y: ysb}; 

(ii) a~b,-,Vc n(la@cl=lb@cl). 
Of course it is immediate that H is closed under @. The game f#,~b is played 

by playing f#a and f#b simultaneously with each player at his turn moving in one 

game or the other. The following properties of El) and ~ are easily derived from 

the definitions. 

LEMMA 6. (i) • is commutative and associative; 
(ii) ~ is an equivalence relation; 

(iii) a @ ~ = a; 

(iv) a ~ b - l a l =  Ibl; 

(v) a ~ b - - } a @ c ~ b @ c .  

In the analysis of win-lose games, the Nim games play an important role. With 

the usual set-theoretic representation of a natural number m as {0,1,-.-, m - 1}, 

m e G and Nm is one-pile Nim with m stones: each player may remove any number 

of stones from the pile. More interesting are games f~m~.....,~ which start with k 

piles having, respectively, m~,..., mk stones. The main result of [1] is that every 

a e G is equivalent (~~  defined by Vc e G ... ) to a unique natural number n. 

There is even a simple process known as Nim addition for computing n such that 
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m 1 @ m 2 , ~  n - - o n e  writes ml  and m 2 in binary notat ion and adds each column 

modulo  2. Our  aim here is to provide a similar set o f  representatives for  the 

equivalence classes o f  H. 

LEMMA 7. For any natural number m, [ m • m  I = - 1 .  

PROOF. Fo r  m = 0 this is immediate.  Fo r  m > 0, 

m @ m = { m @ n : n < m } .  

F o r  each n < m, n Q n E m @ n and [ n @ n[ = - 1 by the induct ion hypothesis,  

s o [ m O n [ = + l .  H e n c e [ m @ m [ = - l .  

COROLLARY 8. For any natural numbers m and n: 

(i) m # n ~ [ m @ n  I= +1; 

(ii) m ~ n ~ m = n .  

LEMMA 9. For any a, b ~H and any natural number m: 

(i) a ~ m ~ [ a @ m [ = - X ;  

(ii) * ~a ~ I  a@ b j => O; 

(iii) m ~ a ~ [ a @ m [  = + X; 

(iv) a=_o ,mea Iau{*}@ml=O. 
PROOF. ( i ) I f  a ~ m ,  then [ a O m J = [ m @ m [ = - l .  (ii) I f  * c a ,  then 

* @ b ~ a @ b .  Since ] * @ b [ = 0 ,  min{Ix[:xea@b}<=O so [ a ( ~ b [ > 0 .  

(iii) is immediate  f rom Lemma 7. (iv) Assume that  a c_ co and m r a. Any element 

c o f  a u {*} ~ m is o f  one of  the following forms:  

c = * @ m: then [c] = 0 by definition; 

c = n @ m f o r n ~ a : t h e n ] e [ =  + l b y 8 ( i ) ;  

e = a V {*} G n for  n < m: then [el > 0 by( i i ) .  

Hence the conditions of  4(ii) are satisfied so [a u {*} @ m] = 0. 

DEFINITION 10. /1 = co ~3 {c t3 (*}: c _ o~, c finite}. 

T h u s / 1  ~ H and we aim to show that  every a ~ H is equivalent to a unique 

d ~/7. We show uniqueness first. 

LEMMA 11. For any a, b~lq, if  a ,~ b, then a = b. 

PROOF Suppose a, b ~ / t  and  a ,-~ b. I f  a, b ~ co, it follows f rom 8 (ii) that  

a = b .  I f a = c U ( * }  andb~co, thenbya(i),]a@b[ = - 1, but  by 9(ii), [ a ~ b[ 

> 0, a contradict ion.  The  remaining case is a = c u {*} and b = d t3 {*}. I f a  # b, 

there exists m such that  (say) m ~ a but  m ~ b. Then  by 9(iii), [ a ~ m[ = + 1 but  

by 9(iv), [ b @ m[ = 0. Hence a ,~ b, which contradicts the hypothesis. 
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Let  p(a) be the smallest k such that  a ~ Hk. Note  that x e a implies p(x) < p(a). 

LE~MA 12. For any a, b ~H: 

(i) lal--+l, lbl--O~laebl>=O; 
(ii) lal  = - l ~ l a @ b  I - - I b l .  

PROOF. We prove (i) and (ii) simultaneously by induction on p(a)+ p(b). 

Both are vacuous for a = * and obvious for  b = *. Hence we assume p(a) + p(b) 

> 0. F o r  (i) suppose l a I = + 1 and I b l = 0. Then  for some x ~ a, I xl = - 1 and 

p(x) + p(b) < p(a) + p(b), so by (ii) o f  the induction hypothesis, Ix @ b I = I b [ 

= 0. Hence min { I c l : c  ea | b} < 0 so l a �9 b I > 0. Fo r  (ii) suppose [a I = - 1. 

There  are three cases: 

Case 1. 1hi = + 1. There exists y e b  with lYl = -  1. By the induct ion 

hypothesis(ii) l a @ y l = l y  I = -  1. S i n c e a @ y ~ a ~ b ,  l a G b  ] = + l = l b  I . 

Case 2. Ibl -- 0. F o r  all y E b, lyl => 0, so by (ii) of  the induct ion hypothesis,  

l a �9 Yl >= O. There is at least one y ~ b with ly] --- 0 = I a �9 YI" Since l a I -- - 1, 
all x ~ a have I xl = + 1 so by (i) of  the induct ion hypothesis, I x ~) b I > 0. Hence 

m i n { j c l : c ~ a @ b } = O ,  and [a@b t = O = / b  I. 

Case 3. I bl = - a. Fo r  all y~b,  lyl = + 1, so by (ii) o f  the induct ion 

hypothesis, l a c y ] - - - l y l  = + 1. Likewise for all x e a ,  I x e b l = l x l - -  + 1  

H e n c e m i n { l c l : c ~ a ~ ) b } =  + 1, and ] a 0 ) b [  = -  1---1 b j. 

COROLLARY 13. For any a ~ H and any natural number m: 

(i) l a l = - l o a ~ ~ ,  

(ii) laeml=--l-~a~m. 
PROOF. (i) By 12 (ii) if la l - -  - 1, then for  any b, l a ~ b l  = lb l  = 1 ~  e b l .  

(ii) Assume i a @ m I = - 1 so by (i), a @ m,,~ ~ .  By Lemma 6, a ~3 m @ m ~ ~ @ m 

= m. But by Lemma 7, I m @ m I = - 1 so by (i) again, m @ m ~ ~ .  Hence 

a @ m @ m ~ a @ ~ = a. By transitivity of  ,~, a ~ m. 

LEMMA 14. For any a, beH,  if  J a e b  I = - 1 ,  then for some natural 

number m, a ,~ m and b ~ m. 

PROOF. We prove the lemma by induct ion on p(a) + p(b). I f  l a | b I = - 1, 

we have in part icular  that  for  all x e a, I x @ b I = + 1. Hence for all x e a 

3 z ~ x ( I z e b  I = - 1 )  or 3 y e b ( I x @ y ] = - 1 ) .  

Case 1. 3x ~ a 3z ex(Iz G b I = - 1). Then  by the induction hypothesis b ~ m 
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for some natural number m. Then l a @ m I - - l a  ~ b I -- - 1 so by 13 (ii), a ,~ m 

also. 

Case 2. Vx e a 3y ~ b(I x �9 Y l = - 1). By the induction hypothesis, for each 

x ~ a there exists a natural number m x such that x ,,~ mx. Corollary 8 implies that 

m~ is unique. Let 

m -- least p ip  r {m~: x ~ a}]. 

We show first that I a @ m I = - 1. For  every n < m there exists x ~ a such that 

n = m x .  B y 9 ( i ) , l x @ n l = l  x @ r n ~ l = - l " H e n c e l a @ n  I = + l . O n t h e o t h e r  

hand, for every x ~ a ,  mx # m so by 8(i), Ix @ ml = l  mxO m I = + 1. Thus for 

every c ~ a 0 )  m, I cl = + 1  so l a G m  I - - - 1 .  Now by 13 (ii), a ~ m  and 

] m @ b l = l a O b l = - i so b ,,~ m also. 

THEOREM. For every a ~ H there exists a. unique 5 ~ t~ such that a ,,~ d. 

PROOF. The uniqueness of d follows from Lemma 11. It is easy to prove by 

induction that for all b, I {*} | b l = 0. Hence * ,~ (*} and we set ;" = (*}. Suppose 

now that p(a) > 0 and ~ exists for all x E a. I f  a ~ m for some natural number m 

we are done, so assume otherwise. Set 

a = x a, U ( * } .  

Then d ~ /7  and it remains to show a ~ d. Let b be an arbitrary element of H. 

It follows from Lemma 14 that la  @b I > 0 and from Lemma 9 (ii) that 

l a @ b /  _>_0. Hence it suffices to show that l a O h l - -  + 1 iff l a @ h l  = + 1 

We have 

l d O b l  = + 1  .~. ~ z ~ d ( l z G b l  = - l)  

3 x ~ a ( . ~ a ) ,  [ ~ O b l  = - 1 )  

~ x ~ a ( I x @ b  I = - 1 )  

The first and fourth equvalences use again the fact that for any y, I d ~) y I >- 0 

and I a @ Y l > 0. The second equivalence is just the definition of  d. Half  of the 

third follows from x ~ :~. For  the right-to-left direction, if I x @ b I = - 1, then by 

Lemma 14, x ~ m for some m. Since m e/7,  m = ~ by uniqueness. 

Of  course the proofs provide us with an algorithm for computing ti from a. 

It would be interesting to know if there is a simple algorithm for computing 

a @ b for a, b ~/7  similar to Nim additon. 
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We have no conjectures as to how much further (if any) this method can be 

carried. An obvious candidate is the class of  games obtained by adding a second 

a tom with value + 1. 
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